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D (~) lying above the contour A,  and also over the roots of  n s ( - -  ~,). 
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A method to construct an asymptotic process to find the axisymmetric vibration 

frequencies of a circular plate is proposed. Cases of symmetric vibrations rela- 
tive to the middle surface (tension-compression vibrations) and of antisymmetric 
(bending) vibrations are considered. 

The asymptotic process for a plate with free endfaces has been studied in de= 

tail under mixed boundary conditions on the side surface. This problem can be 
considered as a model on which the practical convergence of the method proposed 
is analyzed and the accuracy of finding the frequencies at each step of the pro- 
cess is estimated. Furthermore, problems about the natural vibrations of a circu- 
lar plate under other boundary conditions on the side surface, hinged-support and 
rigidly fixing, are solved by the proposed method. 

The purpose of this investigation is to develop a method of determining the 
natural vibration frequencies of a "medium" thickness plate. The question of 
finding the higher frequencies, even for thin plates, as weU as the lowest vibra- 
tion frequencies of medium thickness plates cannot he solved within the frame= 
work of existing applied theories. Hence, it is interesting to forrnulate asequence 
of approximate theories which would permit determination of any, previously as- 
signed, number of the first frequencies with sufficient accuracy for medium thick- 
n~sses, 

I. The problem concerns the natural vibrations of a circular plate under the follow- 
ing boundary conditions: 

~ - - - - x ~ = O ,  z = q - h  (1. 1) 

ur  = x r z = 0 ,  r = a  (1.2) 

Here a is the plate radius and 2h is its thickness. Let us construct the solution in the 

form r ~ = z (1. 3) 
u r ~--- U (13, ~) e ~ t ,  w = W (p, 4) et-t, P = --~-' --K- 

Satisfying the system of Lam~ differential equations and the boundary conditions (1. 1) 
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by using the symbolic method of Lttr'e [1], we obtain the differential equation (1. 6) for 
the resolving function ~ connected with the displacement vector component, by the fol- 
lowing relatiolmhil~: 

U = 2B sin ~B cos ~.A~ - -  (A ~ + A ~) ----X- cos ~.B~ ~p 

XA~ ], W = [ ( A  2 + A~)BsinXB~sia-~ A 2A~BsinXB[sin m 

in the symmetric vibratiom case and 

~p[ sin ~.B~ ] (1.5) U ---- 2A cos XB sin XA~ --  (A 2 -~ A') ~ cos XA ~p 

W = [ 2 A Z c o s X A ~ c o s g B -  (A ~" + A ~) c o s X B ~ c o s g A ] ,  

in the antisymmetric vibrations case. Here 

(G 

A~ = a2 1 

Q l =  (°2a2P 1 
G ' 

is the shear modulus, 

tg ~A 
tg LB 

1--2a  Qi 
ao° , A ' = A I + Q ~ '  B ~ = A ~ +  ~2(1--~) 

h 
a 

o the Poisson's ratio, Pl the density of the plate material) 

(a2 + A~)2 ]±*1 
4-D-A~ ] S* =0 (x. 0 

The upper sign in (1. 6) corresponds to bending vibrations, and the lower sign to ten- 
sion-compression vibratiom. 

Let us briefly describe the cormmction of the exact solution of the problem. We use 
the available arbitrariness in the homogeneous solution of (1.4). (1. 6) and (I.  5),(1. 6) 
to satisfy the boundary conditiom ( l .  2) by using the Betti theorem, say. We seek the so- 
lution of (L  6) in the class of functions satisfying the equation 

A~p = ~ ,  (1. 7) 

= MIo (V~-P) (1. S) 

Substituting (1. 7) into (1. 6), we have the Lamb equation for ~t 

t~ ~: [ (~--+ f ) '  7±1 = 0 (1. 9) 
tg ~ 4~a~ J 

Summing solutions of the form (1. 8) over roots ~n of (1. 9), we have 
¢o 

* = ~ M,Io (V~-~o) (1.10) 
n = l  

Satisfying the boundary conditions (1. 2), we reduce tim problem to an infinite syttemof 
homogeneous algebraic eqaatiom with a diagonal matrix in Mr, 

M n F ( B n ,  ~ ,  o) I l ( ] /~-n)  = 0  ( a - - t ,  2 , . . . )  (1.11) 

Hem F (~n, ~ ,  o) is the derivative of the right aide of the Lamb equation with respect 
to Tln,wlmre ~la 2 = ~t a. Since the Lamb equation ha, no nonzero multiple root, [2] in 
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the range of vibration ~ under consideration, then F (~t,~, f2, o) ~- O. The system 
(1. 11) yields 

Substituting the roots of the Bessel function into (1. 9), we obtain the frequency equations, 
later called "exact '  equations. 

We proceed to construct the asymptotic process to find approximately the natural vi- 
bration frequencies of a circular plate with the boundary conditions (1. 2). Let us again 
start from the representation (1. 10) for the function ~p. Taking account of ( 1 . 3 ) -  (1.5), 
the boundary conditions (1.2) yield 

8 O-'-~" (h2 4- A s) [cos kB cos LAg - -  cos kA cos XBg] ~ [~=t = 0 (1. 13) 

~-~--~[2aeos~,BsinkA; - (A 2 q- A2)eosLA ~ ] ~ p  10=t = 0  

in the bending vibrations case, and 

sin kA 

o[ . ]1 0--~ (As -t- .4 ) ~ B sin ~,B~ - -  B sin ~,B sin ~,A~ A ~ = 0  

ip the tension-compression vibrations case. 
The asymptotic process proposed is the following. Asymptotic expansions are construc- 

ted for the roots of (1. 9) in powers of JL which permit evaluation of any number of the 
first roots ILn with a previously assigned degree of accuracy. At this stage of the asymp- 
totic process the function ~ will then be 

2 N  

~P = ~, M,Jo ( V ~ p )  ( 1.15) 
n-~-I  

in the anti~ymmetric vibrations case and 
2 N - - 1  

* = ~ Mnlo (V '~P )  ( I .  16) 

in tim symmetric vibrations ease, where N is the number of the approximation (N = 
t, 2, 3, . . .) .  

The left aides of the boundary conditions (1. 13) are decomposed in power series in 

A n  ¢ tp=l + A1~¢ [p=i~ 2~.2 "~ . . . .  0 (1. 17) 

A~lV p io=,~. + A~Vp [o=,~s~. s + . . . .  0 

where A u are differential operators of infinite order determined easily from (L  13). 
Tim boundary conditions (L  14) are also decomposed into series similarly. The approp-- 
riate differential operators am later marked with an asterisk in the symmetric vibrations 
c a s e ,  

Equating coefficients of several of the first powers of g in (1. 17) to zero, we obtain 
a finite set of boundary conditions for the function 4- The number of boundary condi- 
tions to be satisfied at each stage of the process should agree with the number of first 
roots of Ixa taken for the Lamb equation (with the number N).  

Thus, we have the following boundary conditions: 
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A,fJ~l~=z = 0 (~ = t ,  2; i = t, 2 , . . .  N) (1. 18) 

at the N - t h  stage of the asymptotic process in the bending vibrations case and 

A~**I~=I ---- 0 ( / = i ,  2 , . . . ,  N) (Z. i9) 
A~**I~=I  = 0 ( k = i ,  2 . . . .  , N - - t )  

un the tension-compression vibrations case. 
Expansions of the left sides of (1. 13) in Fourier series or in series of Legendre polyno- 

mials can be constructed in place of ( L  17). A numerical analysis carried out showed 
that the latter method is most efficient. 

Now, let us deterrnine the natural frequencies of the problems constructed successively 
(for N = t ,  2 . . . .  ) .  Substituting (1. 15) into (1. 18),(1. 16) into (1. 19) and equating the 
determinant of the homogeneous systems of linear algebraic equations in M,,  to zero, 
we obtain an equation to determine the natural frequencies at the N - t h  stage. 

We present the asymptotic expansions of the roots of the Lamb equation. In the case 
of antisymmetric vibrations, the Lamb equation has two roots on the order of t / ' ~ ,  and 
a countable set of roots on the order of t / j~2 

Co Co °[ ] 
t=0, 9, 4,.-. /'ml 3,... 

t 
tt~ = - ~  ~,  Ft,~2~Z ~ (k = 3, 4 , . . . ) ,  ttV+l = gr (p = 3, 5 . . . .  ) (1. 21) 

t=0 

Recursion systems are constructed to find the coefficients C t and F~l,, where F~0 are 
the roots of the equation 

sin 2 ] /F~o  - -  2 ~ ----- 0 

In the tension-compression vibrations case, the Lamb equation has one root on the order 
of Ze and a countable set of roots on the order of | / g z 

OO 

c o  

l IL~* = -~- ~ ~ , ~ t F ~ *  (k = 2, 3 , . . . ) ,  lt~+x = gv* (p = 2, 4 , . . . )  
t=0 

Recursion systems are obtained for the coefficients Cl* and Fh~* ,where F~o* are the 
roots o f  the e q u a t i o n  

sin 2 ] / / - ~ 0  + 2 ~ = 0 

In the bending vibratiom case Fh (k = 3, 4 . . . .  ) am complex in the range of variation 
f2 under consideration, therefore, 11 (V~-~k) =/= 0. Finally, the frequency equation is 

oO oO S' 11 [ ( - -  t-) n Z xtlaici -~- ~ ~4niC i ) = 0 (n = t, 2) 
t~--O, ~, 4,.-* i= l ,  3,o.. 

Let us compare this with the results of the Mindlin [3] and classical [4] theories. The 
relationship between !~ and f~ can be represented by an asymptotic expansion of the 
form Q 

~- = --C [ ( - -  1)'~ co + ~ n c ~  (t + ~ )  + ( - -  t)" ~'~Q'c, (t + h )  - F . . . 1  
(n = t, 2i 
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in the Mindlin theory of bending vibrations. The constants et, e~ depend on the body 
material and for o = 1/s we have el = 0.056 and e 2 = 0.36. Therefore, the first 
term of the asymptotic expansion for /~ from the Mindlin theory agrees (as in the class- 
ical theory) with the corresponding term of the expansion (1. 20) ; the coefficient of L 
differs by 5.6%0 and of L ~ by 36% from the corresponding coefficients of the expansion 
(1. 20). Therefore, the refinement given by the Mindlin theory is that this theory takes 
account of the second term of the asymptotic series (1. 20) in the frequency equation 
(this term is determined sufficiently exactly according to Mindlin). Hence, it can be 
expected that for small ~, this theory will permit a better determination of the frequency 
than will the classical theory. For sufficiently large ~, when the next terms of the expan- 
sion must be retained in the series, the Mindlin theory will not yield good results. 

The frequency equation in the tension-compression case is 

I t ( f ]  [i=o~L2iQ2iC~*'/')" 1 = 0  

The relatiomhip between ix and ~ can be represented by the foUowing asymptotic 

expansion ~[1" = ~-~2 [Co S .~_ ~2~-~2C15 (1 - -  el) @ L4Q4C2 * (1 - -  ez) q- ...] 

in the Mindlin theory of symmetric vibrations [5], where e 1, e2 depend on the body ma- 
terial and we have e t = 0.189 and e2 = 0.574.for  g = V3 • Therefore, the first 
term of the asymptotic expansion for ~1" agrees with the true value, the second differs 
by 18.9%0 and the third by 57.4%. The lesser accuracy of the Mindlin theory in deter- 
mining the tension-compression vibration frequencies than the bending vibration fre- 
quencies is explained by the greater error in determining the second coefficient of the 
expansion as compared with the bending vibrations case. 

A computation of the roots of the frequency equations at different stages of the appro- 
ximation and of the exact equation for cr ___ 1/s and for different values of the parameter 

was conducted on the electronic digital computer "Odra-1204". 
Calculations showed that for small k (k ,~ 0.t) the asymptotic method permits deter- 

mination of more than ten first frequencies with an error not exceeding 0.5%0 in the ben- 
ding vibrations case. Tabte 1 illustrates the practical convergence of the proposed asym- 
ptotic method for ~ = 0.1, 0.5. Values of the frequencies obtained by the asymptotic 
method are presented in row I ,  the exact values of the frequencies in I I ,  the values of 
the frequencies calculated by the Mindlin and classical theories, respectively, in rows 

I I I  and IV. 
A numerical analysis of the convergence of the asymptotic method was carried out for 

different p (p is the number of terms in the expansion (1. 20) and n is the number ofthe 
frequency in increasing order). For Table 1 we use p = t~. For larger values of ~ (~ 
0.2) the asymptotic method permits determination of six - seven first frequencies with an 
error not exceeding 1 - -  2%0. For small £ (~ < 0 . i ) ,  the asymptotic method permits de- 
termination of more than ten first frequencies with error not exceeding 2%0 in the sym- 
metric vibrations caje. For ~ > / 0 . i  the convergence of the method is rather worse than 
in the model problem of antisymmetric vibrations. The results of computing the natural 
frequencies for ~ = 0.4 and p = 6 are presented in Table 2. Furthermore, the bending 
vibration frequencies of a circular plate were calculated by the method proposed under 
different boundary conditions on the side surface. 
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2. Let us consider the axisymmetric problem of the bending vibrations of a circular 
plate with hinged support on the side surface 

(r~ = xrz = 0 ,  z =  -4- h 

err = w ~ O, r = a  

The boundary conditions on the side ~rface can be represented as 

sin ~,B~ kA] 

(A2 -~ A~) 2 (i -- ~) -----if--- p=x 

[2A ~ cos kA~ cos LB - -  (A 2 + A ~) cos LB~ cos gA] ~ [p=i = 0 

The left sides of these repatiomhips are expanded in power series of ~. In the first stage 
of the asymptotic process we have 

, = MI  Io (V~~ p) + M~ Io (V~-~~ [) 

{ 0~V~ [2A ' coskB  - -  (A' + A' )cos  kA] + 

}t (A~ + A2) 2 (t -- ~) cos kA ~ = 0 
P = I  

[2A" cos XB - -  (A ~ + A g) cos k A ] ,  Ip=] = 0 

We hence obtain a homogeneous system of linear algebraic equations in M n  
g 

# 

k = x  

+ (ixi + ~12) 2 (i -- a--------~ cos Xai/o (V~i) Mi = 0 
2 

~, [2~, cos x~, - (~, + o~,) cos x&d Io ( 1 / ~ )  M, = 0 
i = l  

a~ 2 =  ~t+f~2, [~l 2 = ~ t t + ( t - 2 o )  f l / 2 ( l - a )  
Substituting the values of ~t], ~ts from (1. 20) into the determinant of this system an~i 
then equating the determinant to zero, we obtain the frequency equation in the firttttage 
In the second stage we have 

4 

, = Y, Mdo (V~p) (2.2) 

4 

at~ cos Xoqlo (V~t)} M,  = 0 (l'ti "at- Oqi)' 2 (i -- ~) 
4 

[2~  cos k [ ~ -  (!~ + a~ t) Cos ks,]  Io ( ] / '~ )M~ = 0 
4=1 
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4 

~ 2  } 
(IX~ q- ai2) 2 (t - -  ~) ~i2 cos k a i I  o ( t /"~i)  M i = 0 

4 

~ ,  [2Fta, ~ cos k ~  - -  (Fi q- a~ 2) ~ cos kc~] Io  ( l / ~ )  M~ = 0 
i=1 

Similarly to the above, we obtain an equation to determine the natural  frequencies in the 

second stage from (2.2)  and (1. 20). 

T a b l e  1 

0.I 0.5 

2 3 iO i 2 ... 5 6 

I 
II 

I I I  
IV 

n i 

1.336 
t.336 
1.329 
1.468 

3.815 
3.8t5 
3.769 
4.92t 

6.770 
6.770 
6.647 

t0.35 

. , .  9 

20.08 
20.11 
20.5t 

22.58 
22.59 
21.8t 

3.t58 
3.t58 
3.066 
i .34 t  

6.330 
6.324 
6.096 

24.6i 

9.472 
9.397 

t t  .93 
t35.6 

I0.02 
I0.12 
t2.68 

192.4 

T a b l e  2 

n I II III IV 

5.562 

7.447 

8.391 

10.04 

5.485 

7.448 

8.157 

9.868 

6.0t6 

9.165 

9.945 

11.90 

6.637 

t2.15 

17.62 

23.08 

i 
2 
3 
4 
5 
6 

i .269 
4.379 
6.468 
7.545 

t0 . t6  
10.71 

t.269 
4.372 
6.69t 
7.536 

t0.26 
10.82 

T a b l e  3 

I I I  

i .220 
4.245 
6.603 
7.280 

10.25 
t t . 04  

T a b l e  4 

1.692 
4.430 
7.546 
8.385 

10.64 
12.37 

1.732 
4.506 
7.563 
8.313 

10.66 
12.32 

III 

1.763 
4.406 
7.270 
8.750 

10.28 
13.62 

IV 

3.065 
11.93 
26.73 
47.75 

T a b l e  5 

! 

! 2 3 

2.463 
4.754 
6.372 
8.629 
9.895 

2.460 
4.750 
6.162 
8.057 
9.174 

2.460 
4.750 
6 .2 i5  
8.038 
9.071 

4.538 
t9 .26 
43.9t 
78.45 

122.8 
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Let us note that the principal second order minor in the determinant of the system 
(2.2) agrees with the determinant of the system (2.1). The results of computing the na= 
rural frequencies for ~, -~ 0.3 are given in Table 3. Values of the frequencies for/V= 
1, 2 (N  is the number of the approximation) are presented in column I .  

8 .  Moreover, the problem of the bending vibrations of a circular plate whose side 
surface is rigidly clamped o z =  x r , =  0, z = ' 4 - h  (3.1) 

Ur = w =  0, r = a (3.2) 

is solved by the asymptotic method. The condition (3.2) can be represented as 

[2A' cos L4~ cos kB -- (a 2 + A 2) cos ;~B~ cos L41 ~ lp=1 = 0 

Similarly to the above, the frequency equations in the first two stages of the approxima= 

tion were obtained. The natural frequencies are presented in Table 4 for k = 0.3. The 
column notation is the same as before. 

The problem of antisymmetric and symmetric vibrations of a circular plate with a free 
side surface has been examined. The boundary conditions were satisfied by expanding 
them in series of Lcgendre polynomials. The natural frequencies of the antisymmetric 

vibrations are presented in Table 5 for ~ --~ 0.5. 
The deductions about the convergence of the asymptotic method for the last three 

problems are the same as in the model problem of antisymmetric vibrations. 
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